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a b s t r a c t

With the widespread use of lithium ion batteries in portable electronics and electric vehicles, further
improvements in the performance of lithium ion battery materials and accurate prediction of battery
state are of increasing interest to battery researchers. Machine learning, one of the core technologies
of artificial intelligence, is rapidly changing many fields with its ability to learn from historical data
and solve complex tasks, and it has emerged as a new technique for solving current research problems
in the field of lithium ion batteries. This review begins with the introduction of the conceptual framework
of machine learning and the general process of its application, then reviews some of the progress made by
machine learning in both improving battery materials design and accurate prediction of battery state, and
finally points out the current application problems of machine learning and future research directions. It
is believed that the use of machine learning will further promote the large-scale application and improve-
ment of lithium-ion batteries.
� 2021 The Chemical Industry and Engineering Society of China, and Chemical Industry Press Co., Ltd. All

rights reserved.
1. Introduction

Today, the emergence of portable electronics and electric
vehicles has greatly contributed to the development and applica-
tion of rechargeable batteries, such as lead acid, nickel cadmium,
nickel metal hydride and lithium ion batteries (LIBs) [1–4]. LIBs
are gradually become the mainstream of battery development as
its high energy density, high energy efficiency, no memory effect,
low self-discharge rate and wide operating temperature range,
etc. As an important part of global new energy vehicles and other
electronic products, consumers have increasingly higher require-
ments on LIBs material performance and efficiency and safety
during actual use. Current research issues in the field of LIBs are
mainly focused on the following two areas.

On the one hand, there is a need to accelerate the innovation
and optimization of battery materials. The research and develop-
ment of traditional materials are mainly based on experience and
repeated ’trial and error’ experiments. Which consists of seven
stages: discovery, development, property optimization, system
design and integration, certification, manufacturing and deploy-
ment [5]. Different stages would be carried out by research teams
from diverse institutions. As a result, it usually takes 10 ~ 20 years
for a new material from discovery to application, which is quite a
long time and cannot meet the rapidly developing demand of the
market [6]. Since the 1980s, the interdisciplinary integration of
materials, physics and computational science has greatly facili-
tated the development of computational simulation methods.
Common simulation methods include first principle calculation,
molecular dynamics, quantum mechanics and so on. Compared
with ’trial and error’ methods, computational simulations allow
experiments to be carried out with completely control of the vari-
ables involved, accelerating the study of battery materials. How-
ever, the cost of a single experiment and related calculation is
often very high, and continuous attempts based on limited knowl-
edge or experience will increase the number of experiments or cal-
culations, resulting in a waste of resources [7].

The other aspect is the need for accurate prediction of battery
state. With the widespread use of LIBs, the efficiency and safety
of LIBs in practical applications is becoming a key concern, which
requires the construction of advanced battery management sys-
tems (BMS) that can accurately predict the state of charge (SOC),
state of health (SOH) and remaining useful life (RUL) of the battery
to ensure the continued safe and efficient use of the battery. The
most commonly used battery condition prediction methods are
equivalent circuit models (ECMs) and physical-based models
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(PBMs). ECMs based on circuit elements are the most widely used
models to predict battery state online. ECMs are computationally
efficient, but the prediction accuracy is limited due to the lack of
physical information on system state and parameters [8]. PBMs
are based on the electrochemical physics of the battery and
although they can accurately predict the battery state, the compu-
tational cost is greatly increased due to the number of control
equations [9]. The challenge in predicting battery state models is
how to balance the fidelity of the model with the computational
complexity [10].

With the rapid development of artificial intelligence technol-
ogy, machine learning (ML) as its core technology has been widely
used in biology, medicine and other fields [11–13], which has
greatly promoted the development of corresponding industry. ML
also offers new ways to solve problems in the field of battery
research. At present, the application research of ML in the field of
battery is still in the preliminary stage. This paper is mainly based
on the application of ML in battery materials and battery state. The
application of ML in enhancing the performance of LIBs, the exist-
ing problems and research prospects are summarized. This review
provides significant references for researchers to understand the
importance of ML in the application of lithium batteries.
2. Machine Learning

This section provides a brief introduction to ML and the general
process of its algorithmic implementation in LIBs. ML is a multidis-
ciplinary and convergent discipline involving several disciplines
such as probability theory, statistics, approximation theory, convex
analysis and algorithmic complexity theory. Essentially, ML is a
statistical model for data analysis and prediction that enables com-
puters to automatically learn knowledge from existing datasets
and make predictions for specific learning tasks. Currently, the
ML algorithms commonly used in battery research are supervised
learning and unsupervised learning. Supervised learning refers to
the ML problem of learning predictive models from labelled data
and includes algorithms such as support vector machines, Naive
Bayes, linear regression and decision trees [14]. Unsupervised
learning, on the other hand, refers to the ML problem of learning
a training model from unlabeled data, used to achieve, for example,
the identification and classification of data trends, commonly used
in battery research as clustering algorithms [15].

The general process of implementing ML algorithms for practi-
cal problems includes: datasets, feature engineering, training algo-
rithmic models and model evaluation [16–18]. The application of
ML starts with the construction of a complete ML dataset, the qual-
ity of which directly influences the quality of the data analysis and
mining. After building the dataset, we need to transform the mate-
rial features into feature parameters or descriptors that can be rec-
ognized by programs and algorithms. Primitive features or
descriptors usually have sparse, poorly correlated and redundant
information. Evaluation of sparsity, relevance and redundancy of
raw features and integration of domain expert knowledge to opti-
mize feature selection will further improve model prediction per-
formance [19]. Again, depending on the characteristics of the
data, one or more ML algorithms need to be selected to implement
the mapping between the input and output variables. Usually the
more complex the model selected for training, the better the model
fits the training data, but when the model is too complex, the gen-
eralization ability of the model decreases, a situation known as
overfitting, and vice versa known as underfitting. Finally, the
trained models are evaluated using test data to verify the validity
of the models, and the best model is selected based on the scores
of multiple models. A good understanding of the algorithm and
the problem will help in the selection of the algorithm and the
function to be used according to the actual research problem. As
shown in Table 1, we have summarized the advantages and disad-
vantages of commonly used ML algorithms and the basic functions
they involve in lithium batteries and other fields.
3. Machine Learning in Battery Materials

3.1. Screening the battery materials

All solid state lithium ion batteries (ASSLBs) are considered to
be the next generation of energy storage devices with advantages
such as high safety and high energy density, and are currently a
popular research direction in the field of LIBs [20–22]. Solid state
electrolytes are a key part of ASSLBs, for which they need to meet:
high ionic conductivity, stable interfacial properties and other
requirements. The selection of suitable materials is currently the
main technical bottleneck in the development of solid-state bat-
tery technology. ML can rapidly screen out suitable candidates
from large material databases based on the required electrolyte
properties, greatly reducing experimental cycles and costs, and
can effectively solve the problem of difficult material selection
[23,24]. The importance of materials data for science and technol-
ogy innovation, smart manufacturing and other fields is becoming
increasingly evident in the data age. Many open-source material
databases such as the Inorganic Crystal Structure Database, Mate-
rials Project and Total Materia have been established by major
research institutes, which include energy bands, energy gaps, crys-
tal structures and fundamental physical properties data. Zhang
et al. [25] used unsupervised learning to screen out all Li+-
containing compounds from a database of inorganic crystal struc-
tures, and based on the anion lattice structure, which is one of
the key factors affecting ionic conductivity. The more than
12,000 Li+-containing compounds from the Inorganic Crystal Struc-
ture Database were divided into two groups with high ionic con-
ductivity and low ionic conductivity, and then combined with
ab initio molecular dynamics (AIMD) simulations to quantifyrRT,
16 solid-state electrolyte candidates with rRT exceeding 10�4

S�cm�1 as shown in the solid symbols in Fig. 1 (a) were identified,
three of which even exceeded 10�2 S�cm�1, which is comparable to
the highest known solid state electrolyte materials in terms of
ionic conductivity. Sendek et al. [26] found that ML-based guided
search is 2.7 times more likely to identify materials with high ionic
conductivity than a random search, and the logistic regression
model F1 score was 3.5 times higher than a random search. Identi-
fying high ionic conductivity materials from their atomic structure
such as Li � Li bond number per Li, average sublattice bond ionicity
and the average coordination of the anions, the ML model identi-
fied them 1000 times faster than the materials science PhD. The
experiment is shown in Fig. 1 (b), which shows that a logistic
regression model trained using only a small amount of sample data
can achieve fast and accurate screening of high ionic conductivity
materials. In a subsequent study, it was found that the ML based
model accuracy, recall and F1 scores were all much higher
than the material space random search and the Materials Science
Ph.D., which is a strong indication that ML models can greatly
speed up the high ionic conductivity material selection process.

In lithium metal batteries, most safety issues are caused by
uncontrolled lithium dendrite generation, which can lead to short
circuits within the cell [27,28]. Studies have shown that once
lithium dendrites start to grow, it is difficult to retard their growth
tendency [29], and therefore it is important to prevent dendrite
generation to ensure smooth electrodeposition throughout the cell
cycle. Starting from the perspective of stable electrodeposition,
Ahmad et al. [30] input the isotropy and anisotropy of the material
interface, etc. as stability parameters into a crystal graph



Fig. 1. (a) Unsupervised learning finds rRT and activation energy calculated for electrolyte materials (filled symbols) compared to past reported materials (hollow symbols)
[25]. (b) Comparison of F1 scores and prediction per second for screening materials with high ionic conductivity from Li+-containing compounds for logistic regression trained
on 40 examples and materials science Ph.D. students, DFT calculations [26].

Table 1
Summary of common ML algorithms

ML algorithm Function Advantages Disadvantages

Naïve Bayes Bayes’
Theorem

Stable classification efficiency, good performance for small data
sizes, less sensitive to real data, simpler algorithms

Need to calculate prior probabilities, classification decisions
have error rates and are sensitive to the form of representation
of the input data

Logistic
regression

Sigmoid
function

Simple implementation, low computational effort, high speed
and low storage resources

Poor performance when feature space is large; easily under-
fitted and generally less accurate

Linear
regression

Y ¼ xX þ b Simple to implement, simple to calculate Not suitable for fitting non-linear data

K-nearest
neighbor

Euclidean
distance

No assumptions on data, high accuracy, can be used for non-
linear classification; mature theory

Computationally intensive, prone to sample imbalance problems
and requires large amounts of memory

Decision trees Information
gain, Gini
coefficient

Computationally simple, easy to understand and highly
interpretable; able to handle uncorrelated features and better
suited to handle uncorrelated features

Tends to over-fit and ignore correlations between data

Support vector
machine

Kernel function Can solve high-dimensional problems; can handle interactions
of non-linear features; can improve generalization

Less efficient with larger sample sizes; finding the right kernel
function; sensitive to missing data

Artificial
neural
networks

Sigmoid
function, tanh
function, ReLU

High classification accuracy, robust and fault-tolerant to noisy
nerves, and able to adequately approximate complex non-linear
relationships

Requires a large number of parameters; cannot observe the
learning process inside the network, output is difficult to
interpret; long learning time

Random
forests

Multiple
decision trees
bagging

Regression and classification can be performed. No need to
adjust parameters repeatedly. No scaling of data required

For sparse data with very high dimensionality (e.g. text data),
random forests often do not perform very well

Convolutional
neural
networks

Convolutional
layers, Pooling
layers

Parameter sharing and sparse connections result in a significant
reduction in training parameters. With translational invariance

The presence of pooling layers can lead to the loss of a lot of very
valuable information, as well as ignoring the connections
between the whole and the parts

Recurrent
neural
networks

st ¼ f ðst�1; xt ; hÞ Deep models in the time dimension that can model sequence
content

More parameters to train, prone to gradient disappearance and
gradient explosion problems; no feature learning capability
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convolutional neural network prediction model based on shear
modulus and bulk modulus and the elastic constants of the cubic
material were trained using gradient augmented regression and
kernel ridge regression. The model uses isotropic stability criteria
and anisotropic stability criteria to screen six solid materials and
over 20 interfaces from 12,950 solid materials and over 15,000
interfaces, respectively, that have the potential to inhibit lithium
dendrite generation. Considering how to achieve a stable solid
electrolyte interphase (SEI) between electrolyte and electrode,
Liu et al. [31] developed a ML model based on support vector
machine and kernel ridge regression to screen and evaluate the
possible reactions and thermodynamic stability of the Li|LLZOM
interface under different chemical conditions. The results show
that the stability of LLZOM to Li metal depends only on the dopant
and that strong hetero-oxygen bonding incorporation can improve
the thermodynamic stability of the interface, which is confirmed
by DFT calculations.
In addition, ML has been applied in the screening of electrode
coating materials. The coating effectively reduces the interfacial
impedance between the electrodes and the electrolyte, increasing
the cyclability of the battery [32]. Wang et al. [33] proposed a
workflow combining a real-time dynamic ML model based on
moment tensor potentials with molecular dynamics (MD) simula-
tions to calculate the diffusion mobility of lithium ions, which
gradually screened two candidate coating materials with excellent
performance based on properties such as Li molar fraction, oxida-
tion potential, interfacial stability, ionic conductivity, etc. The
workflow progressively identifies Li3Sc2(PO4)3 and Li3B7O12 as the
top performance candidates. In addition, the average absolute error
of the migration energy calculated by this ‘learning on the fly’-MD
has been reduced from 0.32 eV to 0.13 eV compared with that of
high-temperature AIMD, which has significantly improved the cal-
culation accuracy and reduced the cost. The ability of Li3B7O12 to
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provide excellent interfacial stability has been demonstrated in the
study by Xiao et al [34].

3.2. Prediction of material properties

For battery materials, there are potentially thousands of com-
pounds that can be synthesized by inserting metal ions (Li, Na,
etc.) or changing the molar fraction of the constituent elements,
many of which have not yet been synthesized, and it is even more
difficult to characterize the materials, so it is extremely important
for battery research to combine previous experimental data to pre-
dict the properties of new materials more accurately [35]. Using a
ML model based on support vector regression and Gaussian kernel
function algorithm, Fujimura et al. [36] investigated theoretical
data D1600, TC, and Vdis (D1600 is the diffusion coefficient at
1600 K, TC is the transition temperatures, Vdis is average volume
of disordered structures) for 72 different compositions of
LISICON-type electrolytes and experimental data for 95 different
ionic conductivity measurements at different temperatures to pre-
dict r373 with a prediction error of 0.373. The experimental predic-
tion of r373 is the highest for Li4GeO4 among the 72 components,
which is better than the already synthesized Li3.5Zn0.25GeO4. Jalem
et al. [37] further introduced complex material microstructure
parameters such as born effective charge, average bond length,
bond angle, etc. as input feature variables and used a combined
DFT and neural network based model to predict the Li diffusion
potential and cohesive energy of LiMXO4 (M-main group elements,
X-group 14 and 15 elements) structured electrolyte materials,
which was shown to be more accurate in capturing the non-
linear relationship between input and output variables than the
DFT-PLS (multivariate partial least squares regression) prediction
model.

In addition to using ML to predict the ionic conductivity of elec-
trolyte materials, Joshi et al. [38] also attempted to predict the elec-
trode voltage of lithium-ion batteries. The study compared three
ML algorithms of deep neural networks, support vector machine
and kernel ridge regression with models that characterized a par-
ticular electrode material with 80 characteristic parameters
including: working ions within the cell, concentration of active
metal ions within a given fraction, lattice type and space group
numbers. An error analysis of the three models found that the
model that bases on deep neural network predicted electrode volt-
ages with better accuracy than support vector machine and kernel
ridge regression. Joshi et al. also provide a web-based tool in the
battery community that can quickly and accurately predict elec-
trode voltages for li-, Na- and Al-ions, requiring only the stoi-
chiometry of the material at low concentrations, metal ion cell
type, lattice type, etc. parameters. In addition, ML models can
obtain the same trends as DFT calculations in fitting material prop-
erties such as thermodynamic stability of arbitrary chemicals [23],
binding energies of multiple compounds [39], melting tempera-
tures of simple component solids [40] and coordination energies
of alkali group metals in battery electrolytes to achieve accurate
predictions [41].

3.3. Calculating the optimum composition of composite battery
materials

Pure component battery materials are generally difficult to
meet the needs of battery design, so they need to be used in the
form of multiple components or additives, which in turn improve
the electrochemical performance of the material. Experiments
and DFT calculations are difficult to search for the multi-
component ratio or the amount of additives with the best perfor-
mance from a complex composition space, and the introduction
of ML can significantly reduce the number of calculation iterations
and effectively solve the material improvement problem. Sumita
et al. [42] found that oxide electrolytes are more stable in the high
voltage cathode region compared to sulfide electrolytes, but this
may also lead to a significant reduction in the ionic conductivity
of the oxide. It has been shown that mixing lithium salts contain-
ing oxygen can effectively increase the ionic conductivity of the
electrolyte. So Sumita et al. [43] selected 15 groups of electrolytes
with different composition ratios from the Li3PO4-Li3BO3-Li2SO4

ternary hybrid system and calculated their ion conductivity values
at 600 K using density functional molecular dynamics. By using a
ML model based on Gaussian process and Bayesian optimization
algorithm, the conductivity values of electrolyte materials with dif-
ferent hybrid ratios were interpolated to simulate the conductivity
values, and the possibility of high ionic conductivity was investi-
gated based on the z-score values, and it was found that the con-
ductivity of the ternary system was significantly higher than that
of the pure component system and the binary system. Where
z� score ¼ r xð Þ � rmax½ �=dðxÞ, rmax = 193.0 S�cm�1 is the calculated
maximum value of ionic conductivity for 15 composition ratios;
dðxÞ is the standard deviation at point x; r xð Þ is the predicted value
of lithium ion conductivity prediction as a function of component
composition ratios; x = (A, B, C) where A, B and C are the mass
molar fractions of each component.

The combination of high-throughput experiments and ML offers
the possibility to explore the optimal solution for the design space
of complex systems. Whitacre et al. [44] designed a fully auto-
mated controlled test stand based on ML to automatically mix
and measure electrochemical properties such as conductivity and
electrochemical stability windows for binary electrolytes of sulfate
and nitrate, which greatly reduces the time required to search for
the design space of binary mixed electrolytes. On this basis, Dave
et al. [45] constructed an automated experimental platform based
on Bayesian optimization algorithm in Fig. 2 to search the experi-
mental design space for ternary lithium salt (LiNO3, LiClO4, Li2SO4)
and quaternary sodium salt (NaClO4, NaNO3, Na2SO4 and NaBr)
electrolyte systems. The Bayesian optimization algorithm provides
real-time feedback on the results of each experiment to achieve
reverse material design during the experiment, reducing the orig-
inal need to search the ternary electrolyte design space for all
62,000 experiments to more than 250. van Duong et al. [46] also
applied ML to explore the effect of adding additives vinyl carbonate
(VC) and lithium dioxalate borate to a carbonate-based electrolyte
on the cycling performance of lithium-ion batteries (LiNi0.5Mn1.5O4

oxide and graphite cathode), effectively reducing the experimental
cycle time, and the experimentally designed artificial neural net-
work model can be further extended to optimize other parameters
of LNMO/graphite and LNMC622/graphite batteries.

3.4. Material microstructure analysis

The microstructure of materials, such as crystal structure [47]
and polymer molecular weight [48], also has an important influ-
ence on the physical and chemical properties of materials. Using
ML to assist in the statistical analysis of the patterns between
microstructure and material physical and chemical properties
can further guide the design of batteries and the improvement of
battery performance. Hatakeyama-sato et al. [49] constructed the
largest ML database of Li+ conducting polymers, which contains
all the information on the relationship between chemical structure
and conductivity, covering most of the basic chemical structures of
solid electrolytes: polyanions, anions, neutral polymers, etc. A ML
model based on a Gaussian process model and a transfer-learned
graph neural network was designed to discover the relationship
between chemical structure, temperature, composition ratio, etc.
and ionic conductivity in Fig. 3. Charge-transfer complexes of poly-
phenylene sulfide (PPS) derivatives and aromatic oxidants were



Fig. 2. Schematic diagram of the robot automated experimental platform and Bayesian optimization combined to achieve closed-loop inverse material design. The robot
platform automatically runs the experiments, stores and transmits the experimental data to the Bayesian optimization model, and the ML model provides real-time feedback
to adjust the direction of the experiments [45].

Fig. 3. A transfer-learned graph neural network and gaussian process based on ML model to predict polymer electrolyte material physicochemical properties and discover
new material scenarios from within an experimentally constructed material structure databases [50].
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found to have better lithium ion transport (>10�4 S�cm�1), but PPS
has previously been considered as an insulating engineering mate-
rial. In addition, a more important finding is that the charge trans-
fer complexes dimethyl-substituted PPS in the glassy state also
have a higher ionic conductivity of 10�3 S�cm�1, better than some
of the crystalline polymers, and are stable over a wide temperature
range. As conventional rubbery electrolyte designs typically
require lower transition temperatures, this also leads to the need
to reconsider the design strategy for glassy electrolyte materials.
ML based unbiased predictions to obtain glassy polymer elec-
trolyte materials with high ionic conductivity will require more
experiments in the future to explore their application prospects.
Wang et al. [50] combined coarse-grained molecular dynamics
simulation and Bayesian optimization to predict the relationship
between molecular-level material properties such as molecular
size and intermolecular interactions with electrolyte performance.
Coarse-grained can retain information at the molecular level of the
material, and Bayesian algorithms can efficiently explore the high-
dimensional design space. The model further proposes the princi-
ples of altering TFSI-, introducing secondary sites and replacing
PEO backbones to further improve the ionic conductivity of PEO-
LiTFSI materials.

Takagishi et al. [51] attempted to use ML to study the mesoscale
structure of LIBs electrodes. Experiments were carried out by
Matrixlaboratory to generate 2100 3D artificial electrode structure
models in 50 lm � 50 lm � 50 lm space based on the volume
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fraction and radius of active component particles and binder vol-
ume fraction, etc. A neural network with three hidden layers and
a Bayesian optimization algorithm were constructed to inverse
analyze the process parameters of total specific resistance to
obtain the experimental results in Fig. 4. It was found that the total
specific resistance decreases and then increases as the volume
ratio increases, so that there is a minimum value of total specific
resistance, similarly the total specific resistance has the same
result for the diameter of the active component particles and the
pressure during compaction. Attarian Shandiz et al. [52] have also
effectively demonstrated a strong correlation between the physical
properties (formation energy, band gap, etc.) of the crystal system
and the lithium ion silicate cathode using a ML based statistical
model. Wang et al. [53] combined ab initio calculations and
machine learning to investigate the effect of discharge product
structure and solvation effects on the reaction kinetics of
lithium-air batteries. They chose the Gradient Boosting Decision
Tree algorithm, which performs well in small sample size and gives
feature importance, to predict the binding energy between solvent
molecules and LiOH. The input features of the model include
parameters such as molecular properties, dipole moments and
atomic properties of functional groups. It was found that the func-
tional group of the solvent molecule is the key to modulating the
solvation ability and that phosphate solvents are the most effective
in promoting the kinetics of LiOH decomposition.
4. Machine Learning in Battery State Prediction

The BMS is the vital link used to connect and manage lithium-
ion batteries and other electrical components such as electric vehi-
cles. One of the key functions of BMS is to predict the SOC, SOH and
RUL of lithium-ion batteries [10]. The following Eqs. (1) and (2) are
commonly used in the industry to define SOC and SOH, while RUL
is the remaining time or number of cycles during which the max-
imum capacity of the battery decays to 70%–80% of the battery’s
rated capacity during the current cycle [54]. Battery state predic-
tion can significantly improve the stability of battery use, which
Fig. 4. Scatter plot of fitted resistance data for 2100 different volume fractions of activ
resistance, Rreac is the reaction resistance and Rdiff is the lithium ion diffusion resistanc
ignored in the calculation of the total specific resistance [52].
is currently a hot topic in battery research. However, as Li-ion bat-
teries are a complex system, the irreversible change in battery
state is caused by several interacting processes such as lithium
inhomogeneous deposition and side reactions, so it is not possible
to measure battery state directly and accurately. Data-based ML
models are able to fit functions of input and output variables flex-
ibly and efficiently (Fig. 5) and have become an effective way to
solve battery condition prediction problems in recent years
[55,56].

SOC ¼ Ccurr

Cfull
� 100% ð1Þ

SOH ¼ Cfull

Cnom
� 100% ð2Þ

where Ccurr refers to the remaining capacity of the battery within
the current cycle, Cfull refers to the maximum capacity of the battery
for the current cycle and Cnom refers to the rated capacity of the new
battery.

4.1. SOC predictions

Battery SOC is used to describe how much capacity is left in the
battery for the current cycle. SOC prediction is similar to the func-
tion of a car’s fuel gauge. Accurate estimation of SOC protects the
battery from overcharging and discharging, thus extending battery
life. Methods commonly used to estimate the SOC of Li-ion batter-
ies include the open circuit voltage method, the ampere-time inte-
gration method, model-based methods and data-based methods. In
the estimation of battery SOC, open circuit voltage requires the
battery to be left to stand for a period of time for each measure-
ment [57] and ampere-time integration method can suffer from
initial and cumulative errors that are difficult to eliminate [58],
making it difficult for both methods to accurately predict battery
condition directly online. Model-based methods such as the single
particle model and pseudo two-dimensional model are limited by
the number of partial differential equations describing the internal
state of the battery, which significantly increase the computational
e components, Rtot ¼ Rl þ Rreac þ Rdiff ,Rtot is the total resistance, Rl is the electrolyte
e. The electrode resistance is much less than the electrolyte resistance and can be



Fig. 5. Data-driven ML models to predict battery SOC, SOH and RUL scenarios, with the data required to train the models coming from simulations of multi-scale battery
modelling and high-throughput automated experiments [10].
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cost [59]. The accuracy of filtering algorithms such as Kalman filter
[60] and particle filter [61] depends on the quality of the battery
model, and the simplified models of batteries proposed at this
stage are only applicable to some specific conditions such as
isothermal. ML, on the other hand, does not require a priori knowl-
edge of the battery and can be trained with large amounts of data
to achieve fast and accurate prediction of the battery state. Many
researchers have considered the introduction of ML algorithms to
solve the SOC prediction problem.

Álvarez Antón et al. [62] constructed a support vector
regression-based ML model to estimate battery SOC. The model
chose a kernel function (radial basis function) to implement higher
dimensional eigenspace regression and used voltage, current and
temperature data as input variables. The support vector machine
model fits very well on the test dataset, with the maximum error
remaining below 6% and an RMSE of 0.71%. Considering the signif-
icant influence of different operation modes (idling, charging, and
discharging) on the battery behavior, Tong et al. [63] divided the
input layer of the neural network into three layers corresponding
to the three operation models of the battery according to the input
current threshold, and the average error of the SOC estimation
results reached 3.8%. This scheme improves the adaptability of
ML models to different sources of data. He et al. [64] tried to com-
bine the filtering algorithm and ML algorithm to further improve
the prediction accuracy. The experiment uses an unscented Kal-
man filter to eliminate the error of neural network estimation.
After unscented Kalman filter filtering, the RMSE error of the SOC
prediction value is reduced to within 2.5%, and the maximum error
at multiple temperatures is also reduced to within 3.5%. In addition
to combining filtering algorithms, Song et al. [65] combined two
ML algorithms, convolutional neural network (CNN) and long short
term memory (LSTM), where CNN was used to extract high-level
spatial features from the original data and LSTMwas used to model
the relationship between SOC and historical input data. The overall
prediction results had an RMSE of less than 2% and MAE of less
than 1%. The experimental results of the combined CNN-LSTM
model and the CNN and LSTM alone for predicting different initial
SOC batteries are shown in Fig. 6, which shows that the proposed
model outperforms the LSTM and CNN alone for estimating cell
SOC, and the CNN-LSTM model can better respond to the effect
of temperature on battery SOC. In addition, with the popularity
of optimization techniques, the combination of ML and optimiza-
tion techniques is becoming an effective solution to the computa-
tional complexity of ML algorithms. M. A. Hannan et al. [66]
combined the Recurrent nonlinear autoregressive with exogenous
inputs neural network algorithm (RNARX) and lightning search
algorithm (LSA), LSA significantly reduces the number of iterations
for ML algorithms to obtain the optimal hyperparameters, and the
RMSE of the optimized ML for SOC prediction results under differ-
ent battery test experiments (constant discharge test, hybrid pulse
power characterization test and dynamic stress test) is between
0.4%–0.9% and MAE between 0.3%–0.6%. The model outperforms
current state-of-the-art ML methods in terms of RMSE and MAE
reduction, while RNARX-LSA is also able to predict SOC accurately
under different operating conditions.

4.2. SOH, RUL predictions

LIBs are subject to irreversible ageing as they are used more and
more, with consequent safety and performance issues. Therefore
there is a need to accurately predict battery SOH in real time dur-
ing the life of the battery. In contrast to SOC prediction over a short
time span of a single charge/discharge cycle, SOH prediction is per-
formed over multiple charge/discharge cycles over a longer time
span and therefore SOH prediction requires data covering hun-
dreds or thousands of cycles over the entire battery life. Data-
based ML methods are an effective way to solve the SOH prediction
problem. Landi et al. [67] constructed neural network models with
different numbers of neurons in the hidden layer and obtained the
best predictive neural network model with 12 neurons in the hid-
den layer after training. This model uses discharge depth, temper-
ature and current as input parameters, and the error in testing the
model is less than 5%. The predictions of the neural network model
are still a good fit for the actual values on a subset of experimental
data with different discharge depths. Since the neural network
algorithm is based on gradient learning, the problem of conver-
gence results to local extremes and estimation errors may occur.
Pan et al. [68] used the extreme learning machine algorithm with
a simpler model structure to predict SOH, and experimentally
found that the maximum error of extreme learning machine was
2.22%, MAE was 1.72% and RMSE was 0.0109, which were all better
than back propagation neural network. In addition, the prediction
time of extreme learning machine was reduced to 0.0136 s. In
addition, algorithms such as deep neural network [69] and ensem-
ble learning [70] have also been applied to battery SOH prediction,
further improving the accuracy of SOH prediction. Dong et al. [71]
considered combining ML and filter algorithms to improve the
original SOH estimation method based on filtering algorithms,
and experimentally implemented a support vector regression-
particle filter algorithm, the introduction of support vector regres-
sion effectively avoids the degeneracy phenomenon problem
caused by using particle filter alone, maintains the diversity of par-
ticles, and support vector regression-particle filter shows higher
prediction accuracy and robustness than particle filter. Since ML
can fit more accurate battery equations of state from historical
data, Michel et al. [72] found that the introduction of equations
of state derived from ML made the Kalman filter estimation
method more adaptive.

In essence, RUL prediction for LIBs is similar to SOH estimation
studies, because when SOH is reduced to 70%–80% of rated capac-
ity, the battery is also considered to have reached retirement, so
predicting the remaining life of LIBs is also predicting how many
more cycles the battery will go through before SOH will drop to
the specified capacity. Therefore this section focuses on the



Fig. 6. CNN-LSTM combined model structure and prediction results for batteries with different initial SOC. (a) structure of the experimentally proposed CNN-LSTM network
model, (b) prediction results for an initial battery SOC of 60%, (c) prediction results for an initial battery SOC of 80%, (d) prediction results for an initial battery SOC of 100%
[65].
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application of ML in RUL prediction from the perspective of input
variables. The choice of input variables can seriously affect the
accuracy of RUL prediction, and the choice of input variables is
generally divided into direct variables and processed variables.
Direct variables include external features such as capacity, termi-
nal voltage, charge/discharge current [73], cycle time and temper-
ature [74]. Although direct variables are easy to obtain, accurate
prediction will require a large amount of external feature data,
increasing the computational cost. It is therefore necessary to
select variables with a high correlation to the battery RUL or to
process direct variables such as equivalent voltage rise charge/dis-
charge intervals and equivalent current fall charge/discharge inter-
vals from the battery charge/discharge curve for a specific cycle in
order to improve prediction accuracy and reduce calculation costs.
In Patil et al.’s study, in addition to the NASA database including
direct features such as capacity, voltage, and current in each dis-
charge cycle, Patil et al. [75] further obtained 13 processed vari-
ables such as energy of signal, fluctuation index of signal, and
concave convex index from the voltage and temperature profiles
of each discharge cycle. The study used principal component anal-
ysis to extract key parameters that represent most of the informa-
tion in the dataset to reduce the dimensionality of the input
variable space, followed by visualization techniques to extract
highly sensitive variables, and finally obtained the optimized
parameters for voltage curves of energy of signal and fluctuation
index of signal (the calculation Eqs. (3) and (4) are shown below).
Zheng et al. [76] also noted that the energy of voltage signal and
the fluctuation index of voltage signal are strong correlated with
battery RUL, with correlation coefficients q = 0.7 ~ 0.8.

Energy of signal ¼
Z 1

�1
jx tð Þj2dt ð3Þ
Fluctuation index of signal ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðyi � lÞ2

q
x

ð4Þ

where x tð Þ denotes the voltage or temperature signal corresponding
to moment t, yi is the signal at sampling point i, l denotes the mean
value of the signal, and x denotes the sampling frequency.
Severson et al. [77] used 124 commercial LIBs (LFP/graphite) to
generate data sets under the same discharge conditions and differ-
ent fast charging conditions and found a strong correlation
between the logarithm of the variance of DQ100-10(V) extracted
from the discharge voltage curve and the logarithm of the battery
cycle life with a correlation coefficient of q = �0.92. The study It
was found that a simple linear regression model trained on
DQ100-10(V) as an input variable alone was able to predict battery
life relatively accurately (with an average error of approximately
15% on the first test set and 11% on the second test set). In addition
it was possible to achieve a 4.9% error in classifying the long and
short battery lifetimes based on the first 5 cycles of data. Battery
electrochemical impedance spectroscopy (EIS) reflects rich mate-
rial information, but it is difficult to quantitatively select features
that are relevant to battery life. Zhang et al. [78] collected over
20,000 EIS spectra measured at different temperatures and SOCs
and fed the dataset directly into Gaussian process regression to
predict RUL. Experiments (Fig. 7) found that Gaussian process
regression with an automatic relevance determination kernel auto-
matically assigned the maximum prediction weight to the low-
frequency region of the EIS, suggesting that the low-frequency
region of the EIS could be used for accurate prediction. The operat-
ing principle of LIBs is the embedding and de-embedding of
lithium ions between the positive and negative electrodes, and
the potential difference between the electrodes determines the
potential of the battery, so the analysis of the battery voltage is also
the key to understand the change of the battery state. Bereciba
et al. [79] extracted the differential voltage curve (dV=dQ) and
the incremental capacity curve from the battery charge and dis-
charge curves, the peak in the differential voltage curve responds
to the phase change on the voltage curve position, while the incre-
mental capacity peak corresponds to the phase equilibrium posi-
tion on the battery voltage curve. The peak value, peak position
and peak area of the incremental capacity curve and the valley
value and valley position of the differential voltage curve change
during battery ageing, and it was found that there is a strong cor-
relation between the two characteristics and the battery state, with
a correlation coefficient q = 0.97. Further research into capturing
valuable features from historical battery data is important in order
to improve ML prediction accuracy and simplify computation.



Fig. 7. Battery capacity predictions from EIS with input variables extracted. (a) Blue points are battery capacity measurements for the corresponding cycles, red points are
predicted values, and the coefficient of determination R2 = 0.88. (b) Estimated capacity to tested capacity ratio for each cycle of the four battery types at 25 �C. (c) Weight
assignments within the Gaussian process regression model corresponding to 120 frequencies in the range 0.02 Hz–20 kHz, with the maximum weights assigned to 2.16 Hz
and 17.80 Hz, with other frequencies weighted approximately at 0 [78].
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5. Conclusions

LIBs are becoming the mainstream battery product due to their
high energy density and long cycle life. The improvement of bat-
tery performance has been slowed by the difficulty of efficiently
exploring the high-dimensional material space through traditional
material design and calculations. The complexity of the battery
degradation mechanism also makes it difficult to accurately pre-
dict the battery state. The introduction of data-driven ML may
solve the current dilemma in LIBs research in the future. At pre-
sent, the application of ML in the field of battery is still in its
infancy, there are still many directions to think about and explore,
such as deep learning algorithms in the field of image recognition
for the analysis of advanced characterization pictures of batteries,
fault detection of batteries, laddering and so on. In the design of
battery materials such as electrolyte screening, the ionic conduc-
tivity is still mainly used as the evaluation criterion, however,
the performance of electrolyte materials still needs to be consid-
ered in terms of electrochemical window, compatibility with elec-
trode materials and thermal stability. In terms of battery state
prediction, the current battery charge and discharge data set is
simple and has few samples, while the actual working environ-
ment is more complex, and further research is needed to determine
whether the health factors and algorithmmodels obtained now are
applicable to the actual working conditions. Combined with the
current research state of ML in lithium battery applications, the
following aspects need to be further addressed in the future:

(1) ML requires sufficient and high quality data. Accurately fit-
ting the curves of the input and output variables requires
the introduction of a sufficient amount of data. The database
constructed in the current study has limited capacity and the
quality of the data is affected by different experimental con-
ditions and measurement errors, which in turn reduce the
accuracy of the prediction model [80]. In addition, due to
the current experimental conditions, it is difficult to collect
experimental data such as SEM maps and TEM maps in large
quantities, which also greatly limits the application of ML. In
the future, there is a need to share and standardize electro-
chemical experimental data across research institutions to
facilitate systematic collection and application [81].

(2) Advances in ML model architectures. More advanced ML
algorithms such as neural Turing machines [82], generative
adversarial networks [83] etc. need to be introduced to
address the lack of data within the electrochemical database.
In addition, uncertainty analysis of the model must be con-
sidered, and quantification of uncertainty can guide model
construction and data selection, etc. ML and other experi-
mental methods are combined to further increase the cred-
ibility of the model predictions [84].
(3) Interpretability of ML parameters. ML models are often
viewed as ’black box’ functions between input and output
variables, and the choice of parameters within the model
lacks physical or chemical interpretability, making it diffi-
cult to generalize scientific laws from ML models. Inter-
pretable parameters can also simplify the selection of data
features and significantly reduce the amount of data
required and computational costs.

This article reviews the achievements of ML in materials and
state prediction research for LIBs in recent years, which also fully
illustrates the practicality, effectiveness and inevitability of the
intersection between ML and the battery field, which will inevita-
bly become an indispensable complementary tool for materials
science experiments and computational simulation techniques in
the future. However, the process of crossover is still very slow
due to problems such as sparse data, learning model selection
and lack of inter-disciplinary talents. This review hopes to provide
many battery researchers with a new way of thinking to address
the challenges within the current research field and actively pro-
mote the integration of ML and LIBs. It is believed that with the
concerted efforts of many researchers, ML will drive a shift in
research and manufacturing in the battery industry in the future
and the performance of lithium-ion batteries will be further
improved.
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